Show simple item record

dc.contributor.authorGendler, Naomi
dc.contributor.authorKim, Manki
dc.contributor.authorMcAllister, Liam
dc.contributor.authorMoritz, Jakob
dc.contributor.authorStillman, Mike
dc.date.accessioned2022-11-28T15:25:30Z
dc.date.available2022-11-28T15:25:30Z
dc.date.issued2022-11-24
dc.identifier.urihttps://hdl.handle.net/1721.1/146629
dc.description.abstractWe study Euclidean D3-branes wrapping divisors D in Calabi-Yau orientifold compactifications of type IIB string theory. Witten’s counting of fermion zero modes in terms of the cohomology of the structure sheaf OD applies when D is smooth, but we argue that effective divisors of Calabi-Yau threefolds typically have singularities along rational curves. We generalize the counting of fermion zero modes to such singular divisors, in terms of the cohomology of the structure sheaf OD¯¯¯¯¯ of the normalization D¯¯¯¯ of D. We establish this by detailing compactifications in which the singularities can be unwound by passing through flop transitions, giving a physical incarnation of the normalization process. Analytically continuing the superpotential through the flops, we find that singular divisors whose normalizations are rigid can contribute to the superpotential: specifically, h∙+(OD¯¯¯¯¯)=(1,0,0) and h∙−(OD¯¯¯¯¯)=(0,0,0) give a sufficient condition for a contribution. The examples that we present feature infinitely many isomorphic geometric phases, with corresponding infinite-order monodromy groups Γ. We use the action of Γ on effective divisors to determine the exact effective cones, which have infinitely many generators. The resulting nonperturbative superpotentials are Jacobi theta functions, whose modular symmetries suggest the existence of strong-weak coupling dualities involving inversion of divisor volumes.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/JHEP11(2022)142en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleSuperpotentials from singular divisorsen_US
dc.typeArticleen_US
dc.identifier.citationJournal of High Energy Physics. 2022 Nov 24;2022(11):142en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-11-27T04:12:30Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-11-27T04:12:30Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record