Show simple item record

dc.contributor.authorCosta, Edgar
dc.contributor.authorHarvey, David
dc.contributor.authorSutherland, Andrew V.
dc.date.accessioned2022-11-28T15:34:32Z
dc.date.available2022-11-28T15:34:32Z
dc.date.issued2022-11-21
dc.identifier.urihttps://hdl.handle.net/1721.1/146631
dc.description.abstractAbstract We present efficient algorithms for counting points on a smooth plane quartic curve X modulo a prime p. We address both the case where X is defined over  $${\mathbb {F}}_p$$ F p and the case where X is defined over $${\mathbb {Q}}$$ Q and p is a prime of good reduction. We consider two approaches for computing $$\#X({\mathbb {F}}_p)$$ # X ( F p ) , one which runs in $$O(p\log p\log \log p)$$ O ( p log p log log p ) time using $$O(\log p)$$ O ( log p ) space and one which runs in $$O(p^{1/2}\log ^2p)$$ O ( p 1 / 2 log 2 p ) time using $$O(p^{1/2}\log p)$$ O ( p 1 / 2 log p ) space. Both approaches yield algorithms that are faster in practice than existing methods. We also present average polynomial-time algorithms for $$X/{\mathbb {Q}}$$ X / Q that compute $$\#X({\mathbb {F}}_p)$$ # X ( F p ) for good primes $$p\leqslant N$$ p ⩽ N in $$O(N\log ^3 N)$$ O ( N log 3 N ) time using O(N) space. These are the first practical implementations of average polynomial-time algorithms for curves that are not cyclic covers of $${\mathbb {P}}^1$$ P 1 , which in combination with previous results addresses all curves of genus $$g\leqslant 3$$ g ⩽ 3 . Our algorithms also compute Cartier–Manin/Hasse–Witt matrices that may be of independent interest.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s40993-022-00397-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleCounting points on smooth plane quarticsen_US
dc.typeArticleen_US
dc.identifier.citationResearch in Number Theory. 2022 Nov 21;9(1):1en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-11-27T04:12:35Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-11-27T04:12:35Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record