dc.contributor.author | Huang, Yiqi | |
dc.contributor.author | Lee, Man-Chun | |
dc.date.accessioned | 2022-11-29T14:51:28Z | |
dc.date.available | 2022-11-29T14:51:28Z | |
dc.date.issued | 2022-11-28 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/146634 | |
dc.description.abstract | Abstract
In this work, we consider sequences of
$$C^2$$
C
2
metrics which converges to a
$$C^2$$
C
2
metric in
$$C^0$$
C
0
sense. We show that if the scalar curvature of the sequence is almost non-negative in the integral sense, then the limiting metric has scalar curvature lower bound in point-wise sense. | en_US |
dc.publisher | Springer Berlin Heidelberg | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s00209-022-03155-9 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | Scalar curvature lower bound under integral convergence | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Mathematische Zeitschrift. 2022 Nov 28;303(1):2 | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2022-11-29T04:27:16Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature | |
dspace.embargo.terms | Y | |
dspace.date.submission | 2022-11-29T04:27:16Z | |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |