MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rescuing activity of oxygen-damaged pyruvate formate-lyase by a spare part protein

Author(s)
Andorfer, Mary C; Backman, Lindsey RF; Li, Phoebe L; Ulrich, Emily C; Drennan, Catherine L
Thumbnail
DownloadPublished version (3.026Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) that converts pyruvate and coenzyme A into acetyl-CoA and formate in a reaction that is crucial to the primary metabolism of many anaerobic bacteria. The glycyl radical cofactor, which is posttranslationally installed by a radical S-adenosyl-L-methionine (SAM) activase, is a simple and effective catalyst, but is also susceptible to oxidative damage in microaerobic environments. Such damage occurs at the glycyl radical cofactor, resulting in cleaved PFL (cPFL). Bacteria have evolved a spare part protein termed YfiD that can be used to repair cPFL. Previously, we obtained a structure of YfiD by NMR spectroscopy and found that the N-terminus of YfiD was disordered and that the C-terminus of YfiD duplicates the structure of the C-terminus of PFL, including a β-strand that is not removed by the oxygen-induced cleavage. We also showed that cPFL is highly susceptible to proteolysis, suggesting that YfiD rescue of cPFL competes with protein degradation. Here, we probe the mechanism by which YfiD can bind and restore activity to cPFL through enzymatic and spectroscopic studies. Our data show that the disordered N-terminal region of YfiD is important for YfiD glycyl radical installation but not for catalysis, and that the duplicate β-strand does not need to be cleaved from cPFL for YfiD to bind. In fact, truncation of this PFL region prevents YfiD rescue. Collectively our data suggest the molecular mechanisms by which YfiD activation is precluded both when PFL is not damaged and when it is highly damaged.
Date issued
2021
URI
https://hdl.handle.net/1721.1/146790
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Journal of Biological Chemistry
Publisher
Elsevier BV
Citation
Andorfer, Mary C, Backman, Lindsey RF, Li, Phoebe L, Ulrich, Emily C and Drennan, Catherine L. 2021. "Rescuing activity of oxygen-damaged pyruvate formate-lyase by a spare part protein." Journal of Biological Chemistry, 297 (6).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.