Show simple item record

dc.contributor.authorJones, Ross D
dc.contributor.authorQian, Yili
dc.contributor.authorIlia, Katherine
dc.contributor.authorWang, Benjamin
dc.contributor.authorLaub, Michael T
dc.contributor.authorDel Vecchio, Domitilla
dc.contributor.authorWeiss, Ron
dc.date.accessioned2022-12-13T19:01:00Z
dc.date.available2022-12-13T19:01:00Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/146867
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Engineered signaling networks can impart cells with new functionalities useful for directing differentiation and actuating cellular therapies. For such applications, the engineered networks must be tunable, precisely regulate target gene expression, and be robust to perturbations within the complex context of mammalian cells. Here, we use bacterial two-component signaling proteins to develop synthetic phosphoregulation devices that exhibit these properties in mammalian cells. First, we engineer a synthetic covalent modification cycle based on kinase and phosphatase proteins derived from the bifunctional histidine kinase EnvZ, enabling analog tuning of gene expression via its response regulator OmpR. By regulating phosphatase expression with endogenous miRNAs, we demonstrate cell-type specific signaling responses and a new strategy for accurate cell type classification. Finally, we implement a tunable negative feedback controller via a small molecule-stabilized phosphatase, reducing output expression variance and mitigating the context-dependent effects of off-target regulation and resource competition. Our work lays the foundation for establishing tunable, precise, and robust control over cell behavior with synthetic signaling networks.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-022-29338-Wen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleRobust and tunable signal processing in mammalian cells via engineered covalent modification cyclesen_US
dc.typeArticleen_US
dc.identifier.citationJones, Ross D, Qian, Yili, Ilia, Katherine, Wang, Benjamin, Laub, Michael T et al. 2022. "Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles." Nature Communications, 13 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-12-13T18:55:53Z
dspace.orderedauthorsJones, RD; Qian, Y; Ilia, K; Wang, B; Laub, MT; Del Vecchio, D; Weiss, Ren_US
dspace.date.submission2022-12-13T18:55:55Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record