Show simple item record

dc.contributor.authorLin, Benjamin
dc.contributor.authorLuo, Jonathan
dc.contributor.authorLehmann, Ruth
dc.date.accessioned2022-12-15T17:24:07Z
dc.date.available2022-12-15T17:24:07Z
dc.date.issued2022-09-16
dc.identifier.urihttps://hdl.handle.net/1721.1/146885
dc.description.abstract<jats:p> Development, morphogenesis, immune system function, and cancer metastasis rely on the ability of cells to move through diverse tissues. To dissect migratory cell behavior in vivo, we developed cell type–specific imaging and perturbation techniques for <jats:italic>Drosophila</jats:italic> primordial germ cells (PGCs). We find that PGCs use global, retrograde cortical actin flows for orientation and propulsion during guided developmental homing. PGCs use RhoGEF2, a RhoA-specific RGS-RhoGEF, as a dose-dependent regulator of cortical flow through a feedback loop requiring its conserved PDZ and PH domains for membrane anchoring and local RhoA activation. This feedback loop is regulated for directional migration by RhoGEF2 availability and requires AMPK rather than canonical Gα <jats:sub>12/13</jats:sub> signaling. AMPK multisite phosphorylation of RhoGEF2 near a conserved EB1 microtubule-binding SxIP motif releases RhoGEF2 from microtubule-dependent inhibition. Thus, we establish the mechanism by which global cortical flow and polarized RhoA activation can be dynamically adapted during natural cell navigation in a changing environment. </jats:p>en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionof10.1126/sciadv.abo0323en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceScience Advancesen_US
dc.titleAn AMPK phosphoregulated RhoGEF feedback loop tunes cortical flow–driven amoeboid migration in vivoen_US
dc.typeArticleen_US
dc.identifier.citationLin, Benjamin, Luo, Jonathan and Lehmann, Ruth. 2022. "An AMPK phosphoregulated RhoGEF feedback loop tunes cortical flow–driven amoeboid migration in vivo." Science Advances, 8 (37).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-12-15T17:16:37Z
dspace.orderedauthorsLin, B; Luo, J; Lehmann, Ren_US
dspace.date.submission2022-12-15T17:16:49Z
mit.journal.volume8en_US
mit.journal.issue37en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record