MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineered red blood cells carrying PCSK9 inhibitors persistently lower LDL and prevent obesity

Author(s)
Deshycka, Rhogerry; Sudaryo, Valentino; Huang, Nai-Jia; Xie, Yushu; Smeding, Liyan Y; Choi, Moon Kyung; Ploegh, Hidde L; Lodish, Harvey F; Pishesha, Novalia; ... Show more Show less
Thumbnail
DownloadPublished version (2.151Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:p>Low plasma levels of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) are associated with decreased low-density lipoprotein (LDL) cholesterol and a reduced risk of cardiovascular disease. PCSK9 binds to the epidermal growth factor-like repeat A (EGFA) domain of LDL receptors (LDLR), very low-density lipoprotein receptors (VLDLR), apolipoprotein E receptor 2 (ApoER2), and lipoprotein receptor–related protein 1 (LRP1) and accelerates their degradation, thus acting as a key regulator of lipid metabolism. Antibody and RNAi—based PCSK9 inhibitor treatments lower cholesterol and prevent cardiovascular incidents in patients, but their high-cost hampers market penetration. We sought to develop a safe, long-term and one-time solution to treat hyperlipidemia. We created a cDNA encoding a chimeric protein in which the extracellular N- terminus of red blood cells (RBCs) specific glycophorin A was fused to the LDLR EGFA domain and introduced this gene into mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). Following transplantation into irradiated mice, the animals produced RBCs with the EGFA domain (EGFA-GPA RBCs) displayed on their surface. These animals showed significantly reduced plasma PCSK9 (66.5% decrease) and reduced LDL levels (40% decrease) for as long as 12 months post-transplantation. Furthermore, the EGFA- GPA mice remained lean for life and maintained normal body weight under a high-fat diet. Hematopoietic stem cell gene therapy can generate red blood cells expressing an EGFA—glycophorin A chimeric protein as a practical and long-term strategy for treating chronic hyperlipidemia and obesity.</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/146897
Department
Massachusetts Institute of Technology. Department of Biology
Journal
PLoS ONE
Publisher
Public Library of Science (PLoS)
Citation
Deshycka, Rhogerry, Sudaryo, Valentino, Huang, Nai-Jia, Xie, Yushu, Smeding, Liyan Y et al. 2021. "Engineered red blood cells carrying PCSK9 inhibitors persistently lower LDL and prevent obesity." PLoS ONE, 16 (11).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.