Show simple item record

dc.contributor.authorAlbouy, Guillaume
dc.contributor.authorBarron, Jared
dc.contributor.authorBeauchesne, Hugues
dc.contributor.authorBernreuther, Elias
dc.contributor.authorBona, Marcella
dc.contributor.authorCazzaniga, Cesare
dc.contributor.authorCesarotti, Cari
dc.contributor.authorCohen, Timothy
dc.contributor.authorde Cosa, Annapaola
dc.contributor.authorCurtin, David
dc.contributor.authorDemiragli, Zeynep
dc.contributor.authorDoglioni, Caterina
dc.contributor.authorElliot, Alison
dc.contributor.authorDiPetrillo, Karri F.
dc.contributor.authorEble, Florian
dc.contributor.authorErice, Carlos
dc.contributor.authorFreer, Chad
dc.contributor.authorGarcia-Bellido, Aran
dc.contributor.authorGemmell, Caleb
dc.contributor.authorGenest, Marie-Hélène
dc.date.accessioned2022-12-19T13:12:35Z
dc.date.available2022-12-19T13:12:35Z
dc.date.issued2022-12-14
dc.identifier.urihttps://hdl.handle.net/1721.1/146906
dc.description.abstractAbstract In this work, we consider the case of a strongly coupled dark/hidden sector, which extends the Standard Model (SM) by adding an additional non-Abelian gauge group. These extensions generally contain matter fields, much like the SM quarks, and gauge fields similar to the SM gluons. We focus on the exploration of such sectors where the dark particles are produced at the LHC through a portal and undergo rapid hadronization within the dark sector before decaying back, at least in part and potentially with sizeable lifetimes, to SM particles, giving a range of possibly spectacular signatures such as emerging or semi-visible jets. Other, non-QCD-like scenarios leading to soft unclustered energy patterns or glueballs are also discussed. After a review of the theory, existing benchmarks and constraints, this work addresses how to build consistent benchmarks from the underlying physical parameters and present new developments for the pythia Hidden Valley module, along with jet substructure studies. Finally, a series of improved search strategies is presented in order to pave the way for a better exploration of the dark showers at the LHC.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjc/s10052-022-11048-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleTheory, phenomenology, and experimental avenues for dark showers: a Snowmass 2021 reporten_US
dc.typeArticleen_US
dc.identifier.citationThe European Physical Journal C. 2022 Dec 14;82(12):1132en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-12-18T04:12:37Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-12-18T04:12:37Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record