Show simple item record

dc.contributor.authorNieto-Castanon, Alfonso
dc.date.accessioned2022-12-19T14:29:56Z
dc.date.available2022-12-19T14:29:56Z
dc.date.issued2022-11-15
dc.identifier.issn1553-7358
dc.identifier.urihttps://hdl.handle.net/1721.1/146912
dc.description.abstract<jats:p>Current functional Magnetic Resonance Imaging technology is able to resolve billions of individual functional connections characterizing the human connectome. Classical statistical inferential procedures attempting to make valid inferences across this many measures from a reduced set of observations and from a limited number of subjects can be severely underpowered for any but the largest effect sizes. This manuscript discusses fc-MVPA (functional connectivity Multivariate Pattern Analysis), a novel method using multivariate pattern analysis techniques in the context of brain-wide connectome inferences. The theory behind fc-MVPA is presented, and several of its key concepts are illustrated through examples from a publicly available resting state dataset, including an analysis of gender differences across the entire functional connectome. Finally, Monte Carlo simulations are used to demonstrate the validity and sensitivity of this method. In addition to offering powerful whole-brain inferences, fc-MVPA also provides a meaningful characterization of the heterogeneity in functional connectivity across subjects.</jats:p>en_US
dc.publisherPublic Library of Science (PLoS)en_US
dc.relation.isversionof10.1371/journal.pcbi.1010634en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePLoSen_US
dc.subjectComputational Theory and Mathematicsen_US
dc.subjectCellular and Molecular Neuroscienceen_US
dc.subjectGeneticsen_US
dc.subjectMolecular Biologyen_US
dc.subjectEcologyen_US
dc.subjectModeling and Simulationen_US
dc.subjectEcology, Evolution, Behavior and Systematicsen_US
dc.titleBrain-wide connectome inferences using functional connectivity MultiVariate Pattern Analyses (fc-MVPA)en_US
dc.typeArticleen_US
dc.identifier.citationNieto-Castanon, Alfonso. 2022. "Brain-wide connectome inferences using functional connectivity MultiVariate Pattern Analyses (fc-MVPA)." 18 (11).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2022-12-19T14:23:55Z
mit.journal.volume18en_US
mit.journal.issue11en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record