MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time-resolved velocity and ion sound speed measurements from simultaneous bow shock imaging and inductive probe measurements

Author(s)
Datta, R; Russell, DR; Tang, I; Clayson, T; Suttle, LG; Chittenden, JP; Lebedev, SV; Hare, JD; ... Show more Show less
Thumbnail
DownloadPublished version (5.279Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:p> We present a technique to measure the time-resolved velocity and ion sound speed in magnetized, supersonic high-energy-density plasmas. We place an inductive (“b-dot”) probe in a supersonic pulsed-power-driven plasma flow and measure the magnetic field advected by the plasma. As the magnetic Reynolds number is large ( R<jats:sub> M</jats:sub> &gt; 10), the plasma flow advects a magnetic field proportional to the current at the load. This enables us to estimate the flow velocity as a function of time from the delay between the current at the load and the signal at the probe. The supersonic flow also generates a hydrodynamic bow shock around the probe, the structure of which depends on the upstream sonic Mach number. By imaging the shock around the probe with a Mach–Zehnder interferometer, we determine the upstream Mach number from the shock Mach angle, which we then use to determine the ion sound speed from the known upstream velocity. We use the sound speed to infer the value of [Formula: see text], where [Formula: see text] is the average ionization and T<jats:sub> e</jats:sub> is the electron temperature. We use this diagnostic to measure the time-resolved velocity and sound speed of a supersonic ( M<jats:sub> S</jats:sub> ∼ 8), super-Alfvénic ( M<jats:sub> A</jats:sub> ∼ 2) aluminum plasma generated during the ablation stage of an exploding wire array on the Magpie generator (1.4 MA, 250 ns). The velocity and [Formula: see text] measurements agree well with the optical Thompson scattering measurements reported in the literature and with 3D resistive magnetohydrodynamic simulations in GORGON. </jats:p>
Date issued
2022-10-01
URI
https://hdl.handle.net/1721.1/146969
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Review of Scientific Instruments
Publisher
AIP Publishing
Citation
Datta, R, Russell, DR, Tang, I, Clayson, T, Suttle, LG et al. 2022. "Time-resolved velocity and ion sound speed measurements from simultaneous bow shock imaging and inductive probe measurements." Review of Scientific Instruments, 93 (10).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.