Show simple item record

dc.contributor.authorArunachalam, Naveen
dc.contributor.authorGugler, Stefan
dc.contributor.authorTaylor, Michael G
dc.contributor.authorDuan, Chenru
dc.contributor.authorNandy, Aditya
dc.contributor.authorJanet, Jon Paul
dc.contributor.authorMeyer, Ralf
dc.contributor.authorOldenstaedt, Jonas
dc.contributor.authorChu, Daniel BK
dc.contributor.authorKulik, Heather J
dc.date.accessioned2023-01-04T19:22:26Z
dc.date.available2023-01-04T19:22:26Z
dc.date.issued2022-11-14
dc.identifier.urihttps://hdl.handle.net/1721.1/146976
dc.description.abstract<jats:p> To accelerate the exploration of chemical space, it is necessary to identify the compounds that will provide the most additional information or value. A large-scale analysis of mononuclear octahedral transition metal complexes deposited in an experimental database confirms an under-representation of lower-symmetry complexes. From a set of around 1000 previously studied Fe(II) complexes, we show that the theoretical space of synthetically accessible complexes formed from the relatively small number of unique ligands is significantly (∼816k) larger. For the properties of these complexes, we validate the concept of ligand additivity by inferring heteroleptic properties from a stoichiometric combination of homoleptic complexes. An improved interpolation scheme that incorporates information about cis and trans isomer effects predicts the adiabatic spin-splitting energy to around 2 kcal/mol and the HOMO level to less than 0.2 eV. We demonstrate a multi-stage strategy to discover leads from the 816k Fe(II) complexes within a targeted property region. We carry out a coarse interpolation from homoleptic complexes that we refine over a subspace of ligands based on the likelihood of generating complexes with targeted properties. We validate our approach on nine new binary and ternary complexes predicted to be in a targeted zone of discovery, suggesting opportunities for efficient transition metal complex discovery. </jats:p>en_US
dc.language.isoen
dc.publisherAIP Publishingen_US
dc.relation.isversionof10.1063/5.0125700en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAmerican Institute of Physics (AIP)en_US
dc.titleLigand additivity relationships enable efficient exploration of transition metal chemical spaceen_US
dc.typeArticleen_US
dc.identifier.citationArunachalam, Naveen, Gugler, Stefan, Taylor, Michael G, Duan, Chenru, Nandy, Aditya et al. 2022. "Ligand additivity relationships enable efficient exploration of transition metal chemical space." The Journal of Chemical Physics, 157 (18).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.relation.journalThe Journal of Chemical Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-04T18:48:52Z
dspace.orderedauthorsArunachalam, N; Gugler, S; Taylor, MG; Duan, C; Nandy, A; Janet, JP; Meyer, R; Oldenstaedt, J; Chu, DBK; Kulik, HJen_US
dspace.date.submission2023-01-04T18:48:55Z
mit.journal.volume157en_US
mit.journal.issue18en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record