MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Capacity Estimation of Solar Farms Using Deep Learning on High-Resolution Satellite Imagery

Author(s)
Ravishankar, Rashmi; AlMahmoud, Elaf; Habib, Abdulelah; de Weck, Olivier L.
Thumbnail
Downloadremotesensing-15-00210-v2.pdf (55.57Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Global solar photovoltaic capacity has consistently doubled every 18 months over the last two decades, going from 0.3 GW in 2000 to 643 GW in 2019, and is forecast to reach 4240 GW by 2040. However, these numbers are uncertain, and virtually all reporting on deployments lacks a unified source of either information or validation. In this paper, we propose, optimize, and validate a deep learning framework to detect and map solar farms using a state-of-the-art semantic segmentation convolutional neural network applied to satellite imagery. As a final step in the pipeline, we propose a model to estimate the energy generation capacity of the detected solar energy facilities. Objectively, the deep learning model achieved highly competitive performance indicators, including a mean accuracy of 96.87%, and a Jaccard Index (intersection over union of classified pixels) score of 95.5%. Subjectively, it was found to detect spaces between panels producing a segmentation output at a sub-farm level that was better than human labeling. Finally, the detected areas and predicted generation capacities were validated against publicly available data to within an average error of 4.5% Deep learning applied specifically for the detection and mapping of solar farms is an active area of research, and this deep learning capacity evaluation pipeline is one of the first of its kind. We also share an original dataset of overhead solar farm satellite imagery comprising 23,000 images (256 × 256 pixels each), and the corresponding labels upon which the machine learning model was trained.
Date issued
2022-12-30
URI
https://hdl.handle.net/1721.1/146994
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Remote Sensing 15 (1): 210 (2023)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.