Show simple item record

dc.contributor.authorSussman, Ethan
dc.date.accessioned2023-01-09T14:51:55Z
dc.date.available2023-01-09T14:51:55Z
dc.date.issued2023-01-03
dc.identifier.urihttps://hdl.handle.net/1721.1/147006
dc.description.abstractAbstract In this note, we deduce a strengthening of the Orlicz–Pettis theorem from the Itô–Nisio theorem. The argument shows that given any series in a Banach space which is not summable (or more generally unconditionally summable), we can construct a (coarse-grained) subseries with the property that—under some appropriate notion of “almost all”—almost all further subseries thereof fail to be weakly summable. Moreover, a strengthening of the Itô–Nisio theorem by Hoffmann–Jørgensen allows us to replace ‘weakly summable’ with ‘ $$\tau$$ τ -weakly summable’ for appropriate topologies $$\tau$$ τ weaker than the weak topology. A treatment of the Itô–Nisio theorem for admissible $$\tau$$ τ is given.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s43034-022-00225-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleA strengthened Orlicz–Pettis theorem via Itô–Nisioen_US
dc.typeArticleen_US
dc.identifier.citationAnnals of Functional Analysis. 2023 Jan 03;14(1):22en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-08T04:12:57Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-01-08T04:12:57Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record