MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting master transcription factors from pan-cancer expression data

Author(s)
Young, Richard
Thumbnail
DownloadPublished version (7.791Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 4.0 https://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
<jats:p>The CaCTS algorithm nominates cancer cell master transcription factors and guides a model of ovarian cancer regulatory circuitry.</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/147014
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Young, Richard. 2021. "Predicting master transcription factors from pan-cancer expression data." Science Advances, 7 (48).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.