Show simple item record

dc.contributor.authorClosser, Michael
dc.contributor.authorGuo, Yuchun
dc.contributor.authorWang, Ping
dc.contributor.authorPatel, Tulsi
dc.contributor.authorJang, Sumin
dc.contributor.authorHammelman, Jennifer
dc.contributor.authorDe Nooij, Joriene C
dc.contributor.authorKopunova, Rachel
dc.contributor.authorMazzoni, Esteban O
dc.contributor.authorRuan, Yijun
dc.contributor.authorGifford, David K
dc.contributor.authorWichterle, Hynek
dc.date.accessioned2023-01-10T18:23:06Z
dc.date.available2023-01-10T18:23:06Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/147050
dc.description.abstractProper assembly and function of the nervous system requires the generation of a uniquely diverse population of neurons expressing a cell-type-specific combination of effector genes that collectively define neuronal morphology, connectivity, and function. How countless partially overlapping but cell-type-specific patterns of gene expression are controlled at the genomic level remains poorly understood. Here we show that neuronal genes are associated with highly complex gene regulatory systems composed of independent cell-type- and cell-stage-specific regulatory elements that reside in expanded non-coding genomic domains. Mapping enhancer-promoter interactions revealed that motor neuron enhancers are broadly distributed across the large chromatin domains. This distributed regulatory architecture is not a unique property of motor neurons but is employed throughout the nervous system. The number of regulatory elements increased dramatically during the transition from invertebrates to vertebrates, suggesting that acquisition of new enhancers might be a fundamental process underlying the evolutionary increase in cellular complexity.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.NEURON.2021.10.014en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleAn expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversityen_US
dc.typeArticleen_US
dc.identifier.citationClosser, Michael, Guo, Yuchun, Wang, Ping, Patel, Tulsi, Jang, Sumin et al. 2022. "An expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversity." Neuron, 110 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalNeuronen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-10T18:17:49Z
dspace.orderedauthorsClosser, M; Guo, Y; Wang, P; Patel, T; Jang, S; Hammelman, J; De Nooij, JC; Kopunova, R; Mazzoni, EO; Ruan, Y; Gifford, DK; Wichterle, Hen_US
dspace.date.submission2023-01-10T18:17:52Z
mit.journal.volume110en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record