MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal Proteome Profiling to Identify Protein-ligand Interactions in the Apicomplexan Parasite Toxoplasma gondii

Author(s)
Herneisen, Alice; Lourido, Sebastian
Thumbnail
DownloadAccepted version (873.6Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Toxoplasma gondii is a single-celled eukaryotic parasite that chronically infects a quarter of the global population. In recent years, phenotypic screens have identified compounds that block parasite replication. Unraveling the pathways and molecular mechanisms perturbed by such compounds requires target deconvolution. In parasites, such deconvolution has been achieved via chemogenomic approaches-for example, directed evolution followed by whole-genome sequencing or genome-wide knockout screens. As a proteomic alternative that directly probes the physical interaction between compound and protein, thermal proteome profiling (TPP), also known as the cellular thermal shift assay (CETSA), recently emerged as a method to identify small molecule-target interactions in living cells and cell extracts in a variety of organisms, including unicellular eukaryotic pathogens. Ligand binding induces a thermal stability shift-stabilizing or destabilizing proteins that change conformationally in response to the ligand-that can be measured by mass spectrometry (MS). Cells are incubated with different concentrations of ligand and heated, causing thermal denaturation of proteins. The soluble protein is extracted and quantified with multiplexed, quantitative MS, resulting in thousands of thermal denaturation profiles. Proteins engaging the ligand can be identified by their compound-dependent thermal shift. The protocol provided here can be used to identify ligand-target interactions and assess the impact of environmental or genetic perturbations on the thermal stability of the proteome in T. gondii and other eukaryotic pathogens. Graphic abstract: Thermal proteome profiling for target identification in the apicomplexan parasite T. gondii.
Date issued
2021
URI
https://hdl.handle.net/1721.1/147078
Department
Massachusetts Institute of Technology. Department of Biology
Journal
BIO-PROTOCOL
Publisher
Bio-Protocol, LLC
Citation
Herneisen, Alice and Lourido, Sebastian. 2021. "Thermal Proteome Profiling to Identify Protein-ligand Interactions in the Apicomplexan Parasite Toxoplasma gondii." BIO-PROTOCOL, 11 (21).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.