Show simple item record

dc.contributor.authorKacker, Shreeyam
dc.contributor.authorMeredith, Alex
dc.contributor.authorKusters, Joe
dc.contributor.authorTomio, Hannah
dc.contributor.authorCahoy, Kerri
dc.contributor.authorFelt, Violet
dc.date.accessioned2023-01-12T16:59:54Z
dc.date.available2023-01-12T16:59:54Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/147080
dc.language.isoen
dc.publisherAmerican Institute of Aeronautics and Astronautics (AIAA)en_US
dc.relation.isversionof10.2514/6.2022-0646en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Cahoyen_US
dc.titleOn-orbit rule-based and deep learning image segmentation strategiesen_US
dc.typeArticleen_US
dc.identifier.citationKacker, Shreeyam, Meredith, Alex, Kusters, Joe, Tomio, Hannah, Cahoy, Kerri et al. 2022. "On-orbit rule-based and deep learning image segmentation strategies." AIAA SCITECH 2022 Forum.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalAIAA SCITECH 2022 Forumen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2023-01-12T16:47:49Z
dspace.orderedauthorsKacker, S; Meredith, A; Kusters, J; Tomio, H; Cahoy, K; Felt, Ven_US
dspace.date.submission2023-01-12T16:48:00Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record