dc.contributor.author | Schapiro, Denis | |
dc.contributor.author | Sokolov, Artem | |
dc.contributor.author | Yapp, Clarence | |
dc.contributor.author | Chen, Yu-An | |
dc.contributor.author | Muhlich, Jeremy L | |
dc.contributor.author | Hess, Joshua | |
dc.contributor.author | Creason, Allison L | |
dc.contributor.author | Nirmal, Ajit J | |
dc.contributor.author | Baker, Gregory J | |
dc.contributor.author | Nariya, Maulik K | |
dc.contributor.author | Lin, Jia-Ren | |
dc.contributor.author | Maliga, Zoltan | |
dc.contributor.author | Jacobson, Connor A | |
dc.contributor.author | Hodgman, Matthew W | |
dc.contributor.author | Ruokonen, Juha | |
dc.contributor.author | Farhi, Samouil L | |
dc.contributor.author | Abbondanza, Domenic | |
dc.contributor.author | McKinley, Eliot T | |
dc.contributor.author | Persson, Daniel | |
dc.contributor.author | Betts, Courtney | |
dc.contributor.author | Sivagnanam, Shamilene | |
dc.contributor.author | Regev, Aviv | |
dc.contributor.author | Goecks, Jeremy | |
dc.contributor.author | Coffey, Robert J | |
dc.contributor.author | Coussens, Lisa M | |
dc.contributor.author | Santagata, Sandro | |
dc.contributor.author | Sorger, Peter K | |
dc.date.accessioned | 2023-01-13T15:00:40Z | |
dc.date.available | 2023-01-13T15:00:40Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/147096 | |
dc.description.abstract | <jats:title>Abstract</jats:title><jats:p>Highly multiplexed tissue imaging makes detailed molecular analysis of single cells possible in a preserved spatial context. However, reproducible analysis of large multichannel images poses a substantial computational challenge. Here, we describe a modular and open-source computational pipeline, MCMICRO, for performing the sequential steps needed to transform whole-slide images into single-cell data. We demonstrate the use of MCMICRO on tissue and tumor images acquired using multiple imaging platforms, thereby providing a solid foundation for the continued development of tissue imaging software.</jats:p> | en_US |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media LLC | en_US |
dc.relation.isversionof | 10.1038/S41592-021-01308-Y | en_US |
dc.rights | Creative Commons Attribution 4.0 International license | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Nature | en_US |
dc.title | MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Schapiro, Denis, Sokolov, Artem, Yapp, Clarence, Chen, Yu-An, Muhlich, Jeremy L et al. 2022. "MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging." Nature Methods, 19 (3). | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biology | en_US |
dc.relation.journal | Nature Methods | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2023-01-13T14:37:17Z | |
dspace.orderedauthors | Schapiro, D; Sokolov, A; Yapp, C; Chen, Y-A; Muhlich, JL; Hess, J; Creason, AL; Nirmal, AJ; Baker, GJ; Nariya, MK; Lin, J-R; Maliga, Z; Jacobson, CA; Hodgman, MW; Ruokonen, J; Farhi, SL; Abbondanza, D; McKinley, ET; Persson, D; Betts, C; Sivagnanam, S; Regev, A; Goecks, J; Coffey, RJ; Coussens, LM; Santagata, S; Sorger, PK | en_US |
dspace.date.submission | 2023-01-13T14:37:21Z | |
mit.journal.volume | 19 | en_US |
mit.journal.issue | 3 | en_US |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |