MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast neutron background characterization of the future Ricochet experiment at the ILL research nuclear reactor

Author(s)
Augier, C.; Baulieu, G.; Belov, V.; Berge, L.; Billard, J.; Bres, G.; Bret, J-. L.; Broniatowski, A.; Calvo, M.; Cazes, A.; Chaize, D.; Chapellier, M.; Chaplinsky, L.; Chemin, G.; Chen, R.; Colas, J.; De Jesus, M.; de Marcillac, P.; Dumoulin, L.; Exshaw, O.; ... Show more Show less
Thumbnail
Download10052_2022_Article_11150.pdf (1.337Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract The future Ricochet experiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, the Ricochet Collaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present the Ricochet neutron background characterization using $$^3$$ 3 He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to the Ricochet Geant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the future Ricochet experiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness of the muon veto, we expect a total nuclear recoil background rate between 44 ± 3 and 9 ± 2 events/day/kg in the CENNS region of interest, i.e. between 50 eV and 1 keV. We therefore found that the Ricochet experiment should reach a statistical significance of 4.6 to 13.6  $$\sigma $$ σ for the detection of CENNS after one reactor cycle, when only the limiting neutron background is considered.
Date issued
2023-01-14
URI
https://hdl.handle.net/1721.1/147104
Department
Massachusetts Institute of Technology. Laboratory for Nuclear Science
Publisher
Springer Berlin Heidelberg
Citation
The European Physical Journal C. 2023 Jan 14;83(1):20
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.