Show simple item record

dc.contributor.authorBertsimas, Dimitris
dc.contributor.authorGurnee, Wes
dc.date.accessioned2023-01-17T13:02:48Z
dc.date.available2023-01-17T13:02:48Z
dc.date.issued2023-01-12
dc.identifier.urihttps://hdl.handle.net/1721.1/147108
dc.description.abstractAbstract Discovering governing equations of complex dynamical systems directly from data is a central problem in scientific machine learning. In recent years, the sparse identification of nonlinear dynamics (SINDy) framework, powered by heuristic sparse regression methods, has become a dominant tool for learning parsimonious models. We propose an exact formulation of the SINDy problem using mixed-integer optimization (MIO-SINDy) to solve the sparsity constrained regression problem to provable optimality in seconds. On a large number of canonical ordinary and partial differential equations, we illustrate the dramatic improvement in our approach in accurate model discovery while being more sample efficient, robust to noise, and flexible in accommodating physical constraints.en_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttps://doi.org/10.1007/s11071-022-08178-9en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Netherlandsen_US
dc.titleLearning sparse nonlinear dynamics via mixed-integer optimizationen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris and Gurnee, Wes. 2023. "Learning sparse nonlinear dynamics via mixed-integer optimization."
dc.contributor.departmentSloan School of Managementen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-15T04:10:25Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-01-15T04:10:25Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record