Show simple item record

dc.contributor.authorPeterson, Ethan E
dc.contributor.authorEndrizzi, Douglass A
dc.contributor.authorClark, Michael
dc.contributor.authorEgedal, Jan
dc.contributor.authorFlanagan, Kenneth
dc.contributor.authorLoureiro, Nuno F
dc.contributor.authorMilhone, Jason
dc.contributor.authorOlson, Joseph
dc.contributor.authorSovinec, Carl R
dc.contributor.authorWallace, John
dc.contributor.authorForest, Cary B
dc.date.accessioned2023-01-17T19:04:24Z
dc.date.available2023-01-17T19:04:24Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/147148
dc.description.abstract<jats:p>Quasi-periodic plasmoid formation at the tip of magnetic streamer structures is observed to occur in experiments on the Big Red Ball as well as in simulations of these experiments performed with the extended magnetohydrodynamics code, NIMROD. This plasmoid formation is found to occur on a characteristic time scale dependent on pressure gradients and magnetic curvature in both experiment and simulation. Single mode, or laminar, plasmoids exist when the pressure gradient is modest, but give way to turbulent plasmoid ejection when the system drive is higher, which produces plasmoids of many sizes. However, a critical pressure gradient is also observed, below which plasmoids are never formed. A simple heuristic model of this plasmoid formation process is presented and suggested to be a consequence of a dynamic loss of equilibrium in the high-<jats:inline-formula> <jats:alternatives> <jats:tex-math>$\beta$</jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022377821000775_inline1.png" /> </jats:alternatives> </jats:inline-formula> region of the helmet streamer. This model is capable of explaining the periodicity of plasmoids observed in the experiment and simulations, and produces plasmoid periods of 90 minutes when applied to two-dimensional models of solar streamers with a height of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$3R_\odot$</jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022377821000775_inline2.png" /> </jats:alternatives> </jats:inline-formula>. This is consistent with the location and frequency at which periodic plasma blobs have been observed to form by Large Angle and Spectrometric Coronograph and Sun Earth Connection Coronal and Heliospheric Investigation instruments.</jats:p>en_US
dc.language.isoen
dc.publisherCambridge University Press (CUP)en_US
dc.relation.isversionof10.1017/S0022377821000775en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLaminar and turbulent plasmoid ejection in a laboratory Parker Spiral current sheeten_US
dc.typeArticleen_US
dc.identifier.citationPeterson, Ethan E, Endrizzi, Douglass A, Clark, Michael, Egedal, Jan, Flanagan, Kenneth et al. 2021. "Laminar and turbulent plasmoid ejection in a laboratory Parker Spiral current sheet." Journal of Plasma Physics, 87 (4).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.relation.journalJournal of Plasma Physicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2023-01-17T18:56:40Z
dspace.orderedauthorsPeterson, EE; Endrizzi, DA; Clark, M; Egedal, J; Flanagan, K; Loureiro, NF; Milhone, J; Olson, J; Sovinec, CR; Wallace, J; Forest, CBen_US
dspace.date.submission2023-01-17T18:56:51Z
mit.journal.volume87en_US
mit.journal.issue4en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record