dc.contributor.author | Morgan, Dane | |
dc.contributor.author | Pilania, Ghanshyam | |
dc.contributor.author | Couet, Adrien | |
dc.contributor.author | Uberuaga, Blas P | |
dc.contributor.author | Sun, Cheng | |
dc.contributor.author | Li, Ju | |
dc.date.accessioned | 2023-01-20T15:01:13Z | |
dc.date.available | 2023-01-20T15:01:13Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/147584 | |
dc.language.iso | en | |
dc.publisher | Elsevier BV | en_US |
dc.relation.isversionof | 10.1016/J.COSSMS.2021.100975 | en_US |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Machine learning in nuclear materials research | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Morgan, Dane, Pilania, Ghanshyam, Couet, Adrien, Uberuaga, Blas P, Sun, Cheng et al. 2022. "Machine learning in nuclear materials research." Current Opinion in Solid State and Materials Science, 26 (2). | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Nuclear Science and Engineering | en_US |
dc.relation.journal | Current Opinion in Solid State and Materials Science | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2023-01-20T14:43:50Z | |
dspace.orderedauthors | Morgan, D; Pilania, G; Couet, A; Uberuaga, BP; Sun, C; Li, J | en_US |
dspace.date.submission | 2023-01-20T14:43:58Z | |
mit.journal.volume | 26 | en_US |
mit.journal.issue | 2 | en_US |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |