Show simple item record

dc.contributor.authorAlolayan, Omar S.
dc.contributor.authorAlomar, Abdullah O.
dc.contributor.authorWilliams, John R.
dc.date.accessioned2023-01-20T15:31:07Z
dc.date.available2023-01-20T15:31:07Z
dc.date.issued2023-01-12
dc.identifier.urihttps://hdl.handle.net/1721.1/147600
dc.description.abstractReformulating the history matching problem from a least-square mathematical optimization problem into a Markov Decision Process introduces a method in which reinforcement learning can be utilized to solve the problem. This method provides a mechanism where an artificial deep neural network agent can interact with the reservoir simulator and find multiple different solutions to the problem. Such a formulation allows for solving the problem in parallel by launching multiple concurrent environments enabling the agent to learn simultaneously from all the environments at once, achieving significant speed up.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/en16020860en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleParallel Automatic History Matching Algorithm Using Reinforcement Learningen_US
dc.typeArticleen_US
dc.identifier.citationEnergies 16 (2): 860 (2023)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-20T14:22:59Z
dspace.date.submission2023-01-20T14:22:59Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record