MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Disturbance Rejection Control for Active Vibration Suppression of Overhead Hoist Transport Vehicles in Semiconductor Fabs

Author(s)
Qiu, Jiajie; Kim, Hongjin; Xia, Fangzhou; Youcef-Toumi, Kamal
Thumbnail
Downloadmachines-11-00125.pdf (4.333Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
In modern semiconductor fabrication plants, automated overhead hoist transport (OHT) vehicles transport wafers in front opening unified pods (FOUPs). Even in a cleanroom environment, small particles excited by the mechanical vibration of the FOUP can still damage the chips if such particles land on the critical area of the wafers. To minimize the vibration excitation force transferred to the FOUP, this research focuses on controlling the vibration displacement level of an OHT hand unit interface between the OHT vehicle and the FOUP. However, since the OHT vehicle and the FOUP keep traveling, the target system is floating and there exists no external anchoring point for a controlling force source. In addition, no sensor attachments are permitted on mass-production FOUPs, which makes this vibration level suppression problem more challenging. In this research, a custom testbed is designed to replicate the acceleration profile of the OHT vehicle under its travel motion. Then, system modeling and identification is conducted using simulation and experiment to verify the fabricated testbed design. Finally, a disturbance observer-based controller (DOBC) is developed and implemented on a custom active vibration suppression actuator with inertia force-based counterbalancing to reduce peak vibration amplitude from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>870</mn><mspace width="3.33333pt"></mspace><mi mathvariant="sans-serif">&mu;</mi></mrow></semantics></math></inline-formula>m to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>230</mn><mspace width="3.33333pt"></mspace><mi mathvariant="sans-serif">&mu;</mi></mrow></semantics></math></inline-formula>m.
Date issued
2023-01-17
URI
https://hdl.handle.net/1721.1/147606
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Machines 11 (2): 125 (2023)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.