Show simple item record

dc.contributor.authorMerker, Helena A
dc.contributor.authorHeiberger, Harry
dc.contributor.authorNguyen, Linh
dc.contributor.authorLiu, Tongtong
dc.contributor.authorChen, Zhantao
dc.contributor.authorAndrejevic, Nina
dc.contributor.authorDrucker, Nathan C
dc.contributor.authorOkabe, Ryotaro
dc.contributor.authorKim, Song Eun
dc.contributor.authorWang, Yao
dc.contributor.authorSmidt, Tess
dc.contributor.authorLi, Mingda
dc.date.accessioned2023-01-20T17:43:13Z
dc.date.available2023-01-20T17:43:13Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/147611
dc.description.abstractThe determination of magnetic structure poses a long-standing challenge in condensed matter physics and materials science. Experimental techniques such as neutron diffraction are resource-limited and require complex structure refinement protocols, while computational approaches such as first-principles density functional theory (DFT) need additional semi-empirical correction, and reliable prediction is still largely limited to collinear magnetism. Here, we present a machine learning model that aims to classify the magnetic structure by inputting atomic coordinates containing transition metal and rare earth elements. By building a Euclidean equivariant neural network that preserves the crystallographic symmetry, the magnetic structure (ferromagnetic, antiferromagnetic, and non-magnetic) and magnetic propagation vector (zero or non-zero) can be predicted with an average accuracy of 77.8% and 73.6%. In particular, a 91% accuracy is reached when predicting no magnetic ordering even if the structure contains magnetic element(s). Our work represents one step forward to solving the grand challenge of full magnetic structure determination.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.ISCI.2022.105192en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceiScienceen_US
dc.titleMachine learning magnetism classifiers from atomic coordinatesen_US
dc.typeArticleen_US
dc.identifier.citationMerker, Helena A, Heiberger, Harry, Nguyen, Linh, Liu, Tongtong, Chen, Zhantao et al. 2022. "Machine learning magnetism classifiers from atomic coordinates." iScience, 25 (10).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.relation.journaliScienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-20T17:28:12Z
dspace.orderedauthorsMerker, HA; Heiberger, H; Nguyen, L; Liu, T; Chen, Z; Andrejevic, N; Drucker, NC; Okabe, R; Kim, SE; Wang, Y; Smidt, T; Li, Men_US
dspace.date.submission2023-01-20T17:28:16Z
mit.journal.volume25en_US
mit.journal.issue10en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record