Show simple item record

dc.contributor.authorChen, Zhantao
dc.contributor.authorShen, Xiaozhe
dc.contributor.authorAndrejevic, Nina
dc.contributor.authorLiu, Tongtong
dc.contributor.authorLuo, Duan
dc.contributor.authorNguyen, Thanh
dc.contributor.authorDrucker, Nathan C
dc.contributor.authorKozina, Michael E
dc.contributor.authorSong, Qichen
dc.contributor.authorHua, Chengyun
dc.contributor.authorChen, Gang
dc.contributor.authorWang, Xijie
dc.contributor.authorKong, Jing
dc.contributor.authorLi, Mingda
dc.date.accessioned2023-01-20T18:43:49Z
dc.date.available2023-01-20T18:43:49Z
dc.date.issued2023-01
dc.identifier.urihttps://hdl.handle.net/1721.1/147618
dc.description.abstractOne central challenge in understanding phonon thermal transport is a lack of experimental tools to investigate frequency-resolved phonon transport. Although recent advances in computation lead to frequency-resolved information, it is hindered by unknown defects in bulk regions and at interfaces. Here, a framework that can uncover microscopic phonon transport information in heterostructures is presented, integrating state-of-the-art ultrafast electron diffraction (UED) with advanced scientific machine learning (SciML). Taking advantage of the dual temporal and reciprocal-space resolution in UED, and the ability of SciML to solve inverse problems involving O ( 10 3 ) $\mathcal{O}({10^3})$ coupled Boltzmann transport equations, the frequency-dependent interfacial transmittance and frequency-dependent relaxation times of the heterostructure from the diffraction patterns are reliably recovered. The framework is applied to experimental Au/Si UED data, and a transport pattern beyond the diffuse mismatch model is revealed, which further enables a direct reconstruction of real-space, real-time, frequency-resolved phonon dynamics across the interface. The work provides a new pathway to probe interfacial phonon transport mechanisms with unprecedented details.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionof10.1002/adma.202206997en_US
dc.rightsCreative Commons Attribution NonCommercial License 4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceWileyen_US
dc.titlePanoramic Mapping of Phonon Transport from Ultrafast Electron Diffraction and Scientific Machine Learningen_US
dc.typeArticleen_US
dc.identifier.citationChen, Zhantao, Shen, Xiaozhe, Andrejevic, Nina, Liu, Tongtong, Luo, Duan et al. 2023. "Panoramic Mapping of Phonon Transport from Ultrafast Electron Diffraction and Scientific Machine Learning." Advanced Materials, 35 (2).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.relation.journalAdvanced Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-20T18:18:35Z
dspace.orderedauthorsChen, Z; Shen, X; Andrejevic, N; Liu, T; Luo, D; Nguyen, T; Drucker, NC; Kozina, ME; Song, Q; Hua, C; Chen, G; Wang, X; Kong, J; Li, Men_US
dspace.date.submission2023-01-20T18:18:37Z
mit.journal.volume35en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record