Show simple item record

dc.contributor.authorUhlemann, Sebastian
dc.contributor.authorDafflon, Baptiste
dc.contributor.authorWainwright, Haruko Murakami
dc.contributor.authorWilliams, Kenneth Hurst
dc.contributor.authorMinsley, Burke
dc.contributor.authorZamudio, Katrina
dc.contributor.authorCarr, Bradley
dc.contributor.authorFalco, Nicola
dc.contributor.authorUlrich, Craig
dc.contributor.authorHubbard, Susan
dc.date.accessioned2023-01-20T19:39:44Z
dc.date.available2023-01-20T19:39:44Z
dc.date.issued2022-03-25
dc.identifier.urihttps://hdl.handle.net/1721.1/147621
dc.description.abstract<jats:p>Bedrock property quantification is critical for predicting the hydrological response of watersheds to climate disturbances. Estimating bedrock hydraulic properties over watershed scales is inherently difficult, particularly in fracture-dominated regions. Our analysis tests the covariability of above- and belowground features on a watershed scale, by linking borehole geophysical data, near-surface geophysics, and remote sensing data. We use machine learning to quantify the relationships between bedrock geophysical/hydrological properties and geomorphological/vegetation indices and show that machine learning relationships can estimate most of their covariability. Although we can predict the electrical resistivity variation across the watershed, regions of lower variability in the input parameters are shown to provide better estimates, indicating a limitation of commonly applied geomorphological models. Our results emphasize that such an integrated approach can be used to derive detailed bedrock characteristics, allowing for identification of small-scale variations across an entire watershed that may be critical to assess the impact of disturbances on hydrological systems.</jats:p>en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionof10.1126/sciadv.abj2479en_US
dc.rightsCreative Commons Attribution NonCommercial License 4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceScience Advancesen_US
dc.titleSurface parameters and bedrock properties covary across a mountainous watershed: Insights from machine learning and geophysicsen_US
dc.typeArticleen_US
dc.identifier.citationUhlemann, Sebastian, Dafflon, Baptiste, Wainwright, Haruko Murakami, Williams, Kenneth Hurst, Minsley, Burke et al. 2022. "Surface parameters and bedrock properties covary across a mountainous watershed: Insights from machine learning and geophysics." Science Advances, 8 (12).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-20T19:33:11Z
dspace.orderedauthorsUhlemann, S; Dafflon, B; Wainwright, HM; Williams, KH; Minsley, B; Zamudio, K; Carr, B; Falco, N; Ulrich, C; Hubbard, Sen_US
dspace.date.submission2023-01-20T19:33:16Z
mit.journal.volume8en_US
mit.journal.issue12en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record