MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Planar 2D wireframe DNA origami

Author(s)
Wang, Xiao; Li, Shanshan; Jun, Hyungmin; John, Torsten; Zhang, Kaiming; Fowler, Hannah; Doye, Jonathan PK; Chiu, Wah; Bathe, Mark; ... Show more Show less
Thumbnail
DownloadPublished version (933.0Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 4.0 https://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
<jats:p>Two-dimensional (2D) DNA origami is widely used for applications ranging from excitonics to single-molecule biophysics. Conventional, single-layer 2D DNA origami exhibits flexibility and curvature in solution; however, that may limit its suitability as a 2D structural template. In contrast, 2D wireframe DNA origami rendered with six-helix bundle edges offers local control over duplex orientations with enhanced in-plane rigidity. Here, we investigate the 3D structure of these assemblies using cryo–electron microscopy (cryo-EM). 3D reconstructions reveal a high degree of planarity and homogeneity in solution for polygonal objects with and without internal mesh, enabling 10-Å resolution for a triangle. Coarse-grained simulations were in agreement with cryo-EM data, offering molecular structural insight into this class of 2D DNA origami. Our results suggest that these assemblies may be valuable for 2D material applications and geometries that require high structural fidelity together with local control over duplex orientations, rather than parallel duplex assembly.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/147751
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Wang, Xiao, Li, Shanshan, Jun, Hyungmin, John, Torsten, Zhang, Kaiming et al. 2022. "Planar 2D wireframe DNA origami." Science Advances, 8 (20).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.