Show simple item record

dc.contributor.authorKnappe, Grant A
dc.contributor.authorWamhoff, Eike-Christian
dc.contributor.authorRead, Benjamin J
dc.contributor.authorIrvine, Darrell J
dc.contributor.authorBathe, Mark
dc.date.accessioned2023-01-27T15:29:21Z
dc.date.available2023-01-27T15:29:21Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/147755
dc.description.abstractDNA origami is a powerful nanomaterial for biomedical applications due in part to its capacity for programmable, site-specific functionalization. To realize these applications, scalable and efficient conjugation protocols are needed for diverse moieties ranging from small molecules to biomacromolecules. Currently, there are no facile and general methods for in situ covalent modification and label-free quantification of reaction conversion. Here, we investigate the postassembly functionalization of DNA origami and the subsequent high-performance liquid chromatography-based characterization of these nanomaterials. Following this approach, we developed a versatile DNA origami functionalization and characterization platform. We observed quantitative in situ conversion using widely accessible click chemistry for carbohydrates, small molecules, peptides, polymers, and proteins. This platform should provide broader access to covalently functionalized DNA origami, as illustrated here by PEGylation for passivation and HIV antigen decoration to construct virus-like particle vaccines.en_US
dc.language.isoen
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionof10.1021/ACSNANO.1C03158en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleIn Situ Covalent Functionalization of DNA Origami Virus-like Particlesen_US
dc.typeArticleen_US
dc.identifier.citationKnappe, Grant A, Wamhoff, Eike-Christian, Read, Benjamin J, Irvine, Darrell J and Bathe, Mark. 2021. "In Situ Covalent Functionalization of DNA Origami Virus-like Particles." ACS Nano, 15 (9).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.relation.journalACS Nanoen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-27T15:08:56Z
dspace.orderedauthorsKnappe, GA; Wamhoff, E-C; Read, BJ; Irvine, DJ; Bathe, Men_US
dspace.date.submission2023-01-27T15:08:57Z
mit.journal.volume15en_US
mit.journal.issue9en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record