Show simple item record

dc.contributor.authorHu, Jennifer F
dc.contributor.authorYim, Daniel
dc.contributor.authorMa, Duanduan
dc.contributor.authorHuber, Sabrina M
dc.contributor.authorDavis, Nick
dc.contributor.authorBacusmo, Jo Marie
dc.contributor.authorVermeulen, Sidney
dc.contributor.authorZhou, Jieliang
dc.contributor.authorBegley, Thomas J
dc.contributor.authorDeMott, Michael S
dc.contributor.authorLevine, Stuart S
dc.contributor.authorde Crécy-Lagard, Valérie
dc.contributor.authorDedon, Peter C
dc.contributor.authorCao, Bo
dc.date.accessioned2023-01-31T15:06:04Z
dc.date.available2023-01-31T15:06:04Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/147800
dc.description.abstractCurrent next-generation RNA-sequencing (RNA-seq) methods do not provide accurate quantification of small RNAs within a sample, due to sequence-dependent biases in capture, ligation and amplification during library preparation. We present a method, absolute quantification RNA-sequencing (AQRNA-seq), that minimizes biases and provides a direct, linear correlation between sequencing read count and copy number for all small RNAs in a sample. Library preparation and data processing were optimized and validated using a 963-member microRNA reference library, oligonucleotide standards of varying length, and RNA blots. Application of AQRNA-seq to a panel of human cancer cells revealed >800 detectable miRNAs that varied during cancer progression, while application to bacterial transfer RNA pools, with the challenges of secondary structure and abundant modifications, revealed 80-fold variation in tRNA isoacceptor levels, stress-induced site-specific tRNA fragmentation, quantitative modification maps, and evidence for stress-induced, tRNA-driven, codon-biased translation. AQRNA-seq thus provides a versatile means to quantitatively map the small RNA landscape in cells.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41587-021-00874-Yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleQuantitative mapping of the cellular small RNA landscape with AQRNA-seqen_US
dc.typeArticleen_US
dc.identifier.citationHu, Jennifer F, Yim, Daniel, Ma, Duanduan, Huber, Sabrina M, Davis, Nick et al. 2021. "Quantitative mapping of the cellular small RNA landscape with AQRNA-seq." Nature Biotechnology, 39 (8).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-31T15:01:07Z
dspace.orderedauthorsHu, JF; Yim, D; Ma, D; Huber, SM; Davis, N; Bacusmo, JM; Vermeulen, S; Zhou, J; Begley, TJ; DeMott, MS; Levine, SS; de Crécy-Lagard, V; Dedon, PC; Cao, Ben_US
dspace.date.submission2023-01-31T15:01:10Z
mit.journal.volume39en_US
mit.journal.issue8en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record