Show simple item record

dc.contributor.authorFraenkel, Ernest
dc.date.accessioned2023-01-31T18:53:12Z
dc.date.available2023-01-31T18:53:12Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/147816
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>The clinical presentation of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, varies widely across patients, making it challenging to determine if potential therapeutics slow progression. We sought to determine whether there were common patterns of disease progression that could aid in the design and analysis of clinical trials. We developed an approach based on a mixture of Gaussian processes to identify clusters of patients sharing similar disease progression patterns, modeling their average trajectories and the variability in each cluster. We show that ALS progression is frequently nonlinear, with periods of stable disease preceded or followed by rapid decline. We also show that our approach can be extended to Alzheimer’s and Parkinson’s diseases. Our results advance the characterization of disease progression of ALS and provide a flexible modeling approach that can be applied to other progressive diseases.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S43588-022-00299-Wen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleIdentifying patterns in amyotrophic lateral sclerosis progression from sparse longitudinal dataen_US
dc.typeArticleen_US
dc.identifier.citationFraenkel, Ernest. 2022. "Identifying patterns in amyotrophic lateral sclerosis progression from sparse longitudinal data." Nature Computational Science, 2 (9).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.relation.journalNature Computational Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-31T18:25:19Z
dspace.orderedauthorsRamamoorthy, D; Severson, K; Ghosh, S; Sachs, K; Baxi, EG; Coyne, AN; Mosmiller, E; Hayes, L; Cerezo, A; Ahmad, O; Roy, P; Zeiler, S; Krakauer, JW; Li, J; Donde, A; Huynh, N; Adam, M; Wassie, BT; Lenail, A; Patel-Murray, NL; Raghav, Y; Sachs, K; Kozareva, V; Tsitkov, S; Ehrenberger, T; Kaye, JA; Lima, L; Wyman, S; Vertudes, E; Amirani, N; Raja, K; Thomas, R; Lim, RG; Miramontes, R; Wu, J; Vaibhav, V; Matlock, A; Venkatraman, V; Holewenski, R; Sundararaman, N; Pandey, R; Manalo, D-M; Frank, A; Ornelas, L; Panther, L; Gomez, E; Galvez, E; Perez, D; Meepe, I; Lei, S; Pinedo, L; Liu, C; Moran, R; Sareen, D; Landin, B; Agurto, C; Cecchi, G; Norel, R; Thrower, S; Luppino, S; Farrar, A; Pothier, L; Yu, H; Sinani, E; Vigneswaran, P; Sherman, AV; Farr, SM; Mandefro, B; Trost, H; Banuelos, MG; Garcia, V; Workman, M; Ho, R; Baloh, R; Roggenbuck, J; Harms, MB; Prina, C; Heintzman, S; Kolb, S; Stocksdale, J; Wang, K; Morgan, T; Heitzman, D; Jamil, A; Jockel-Balsarotti, J; Karanja, E; Markway, J; McCallum, M; Miller, T; Joslin, B; Alibazoglu, D; Ajroud-Driss, S; Beavers, JC; Bellard, M; Bruce, E; Maragakis, N; Cudkowicz, ME; Berry, J; Thompson, T; Finkbeiner, S; Thompson, LM; Van Eyk, JE; Svendsen, CN; Rothstein, JD; Glass, JD; Fournier, CN; Sherman, A; Lunetta, C; Walk, D; Hayat, G; Wymer, J; Gwathmey, K; Olney, N; Ajroud-Driss, S; Heiman-Patterson, T; Arcila-Londono, X; Faulconer, K; Sanani, E; Berger, A; Mirochnick, J; Herrington, TM; Berry, JD; Ng, K; Fraenkel, Een_US
dspace.date.submission2023-01-31T18:25:30Z
mit.journal.volume2en_US
mit.journal.issue9en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record