dc.contributor.author | Annevelink, Emil | |
dc.contributor.author | Kurchin, Rachel | |
dc.contributor.author | Muckley, Eric | |
dc.contributor.author | Kavalsky, Lance | |
dc.contributor.author | Hegde, Vinay I. | |
dc.contributor.author | Sulzer, Valentin | |
dc.contributor.author | Zhu, Shang | |
dc.contributor.author | Pu, Jiankun | |
dc.contributor.author | Farina, David | |
dc.contributor.author | Johnson, Matthew | |
dc.contributor.author | Gandhi, Dhairya | |
dc.contributor.author | Dave, Adarsh | |
dc.contributor.author | Lin, Hongyi | |
dc.contributor.author | Edelman, Alan | |
dc.date.accessioned | 2023-02-01T16:53:10Z | |
dc.date.available | 2023-02-01T16:53:10Z | |
dc.date.issued | 2022-12-22 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/147830 | |
dc.description.abstract | Abstract
Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, mesoscale, and continuum simulations. We present an automated workflow, AutoMat, which accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions, such as machine learning surrogates or automated robotic experiments “in-the-loop.” The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned.
Graphical abstract | en_US |
dc.publisher | Springer International Publishing | en_US |
dc.relation.isversionof | https://doi.org/10.1557/s43577-022-00424-0 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Springer International Publishing | en_US |
dc.title | AutoMat: Automated materials discovery for electrochemical systems | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Annevelink, Emil, Kurchin, Rachel, Muckley, Eric, Kavalsky, Lance, Hegde, Vinay I. et al. 2022. "AutoMat: Automated materials discovery for electrochemical systems." | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2023-02-01T04:42:12Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s), under exclusive License to the Materials Research Society | |
dspace.embargo.terms | Y | |
dspace.date.submission | 2023-02-01T04:42:12Z | |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |