Show simple item record

dc.contributor.authorAnnevelink, Emil
dc.contributor.authorKurchin, Rachel
dc.contributor.authorMuckley, Eric
dc.contributor.authorKavalsky, Lance
dc.contributor.authorHegde, Vinay I.
dc.contributor.authorSulzer, Valentin
dc.contributor.authorZhu, Shang
dc.contributor.authorPu, Jiankun
dc.contributor.authorFarina, David
dc.contributor.authorJohnson, Matthew
dc.contributor.authorGandhi, Dhairya
dc.contributor.authorDave, Adarsh
dc.contributor.authorLin, Hongyi
dc.contributor.authorEdelman, Alan
dc.date.accessioned2023-02-01T16:53:10Z
dc.date.available2023-02-01T16:53:10Z
dc.date.issued2022-12-22
dc.identifier.urihttps://hdl.handle.net/1721.1/147830
dc.description.abstractAbstract Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, mesoscale, and continuum simulations. We present an automated workflow, AutoMat, which accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions, such as machine learning surrogates or automated robotic experiments “in-the-loop.” The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned. Graphical abstracten_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1557/s43577-022-00424-0en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleAutoMat: Automated materials discovery for electrochemical systemsen_US
dc.typeArticleen_US
dc.identifier.citationAnnevelink, Emil, Kurchin, Rachel, Muckley, Eric, Kavalsky, Lance, Hegde, Vinay I. et al. 2022. "AutoMat: Automated materials discovery for electrochemical systems."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-02-01T04:42:12Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive License to the Materials Research Society
dspace.embargo.termsY
dspace.date.submission2023-02-01T04:42:12Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record