Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines
Author(s)
Kim, Byungji; Hosn, Ryan R; Remba, Tanaka; Yun, Dongsoo; Li, Na; Abraham, Wuhbet; Melo, Mariane B; Cortes, Manuel; Li, Bridget; Zhang, Yuebao; Dong, Yizhou; Irvine, Darrell J; ... Show more Show less
DownloadPublished version (7.427Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
The recent clinical success of multiple mRNA-based SARS-CoV-2 vaccines has proven the potential of RNA formulated in lipid nanoparticles (LNPs) in humans, and products based on base-modified RNA, sequence-optimized RNA, and self-replicating RNAs formulated in LNPs are all in various stages of clinical development. However, much remains to be learned about critical parameters governing the manufacturing and use of LNP-RNA formulations. One important issue that has received limited attention in the literature to date is the identification of optimal storage conditions for LNP-RNA that preserve long-term activity of the formulations. Here, we analyzed the physical structure, in vivo expression characteristics, and functional activity of alphavirus-derived self-replicating RNA (repRNA)-loaded LNPs encoding HIV vaccine antigens following storage in varying temperatures, buffers, and in the presence or absence of cryoprotectants. We found that for lipid nanoparticles with compositions similar to clinically-used LNPs, storage in RNAse-free PBS containing 10% (w/v) sucrose at -20 °C was able to maintain vaccine stability and in vivo potency at a level equivalent to freshly prepared vaccines following 30 days of storage. LNPs loaded with repRNA could also be lyophilized with retention of bioactivity.
Date issued
2023-01Department
Massachusetts Institute of Technology. Department of Biological EngineeringJournal
Journal of Controlled Release
Publisher
Elsevier BV
Citation
Kim, Byungji, Hosn, Ryan R, Remba, Tanaka, Yun, Dongsoo, Li, Na et al. 2023. "Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines." Journal of Controlled Release, 353.
Version: Final published version