Show simple item record

dc.contributor.authorGhosh, Souparno
dc.contributor.authorLi, Nan
dc.contributor.authorSchwalm, Miriam
dc.contributor.authorBartelle, Benjamin B
dc.contributor.authorXie, Tianshu
dc.contributor.authorDaher, Jade I
dc.contributor.authorSingh, Urvashi D
dc.contributor.authorXie, Katherine
dc.contributor.authorDiNapoli, Nicholas
dc.contributor.authorEvans, Nicholas B
dc.contributor.authorChung, Kwanghun
dc.contributor.authorJasanoff, Alan
dc.date.accessioned2023-02-02T14:12:53Z
dc.date.available2023-02-02T14:12:53Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/147846
dc.description.abstractThe complex connectivity of the mammalian brain underlies its function, but understanding how interconnected brain regions interact in neural processing remains a formidable challenge. Here we address this problem by introducing a genetic probe that permits selective functional imaging of distributed neural populations defined by viral labeling techniques. The probe is an engineered enzyme that transduces cytosolic calcium dynamics of probe-expressing cells into localized hemodynamic responses that can be specifically visualized by functional magnetic resonance imaging. Using a viral vector that undergoes retrograde transport, we apply the probe to characterize a brain-wide network of presynaptic inputs to the striatum activated in a deep brain stimulation paradigm in rats. The results reveal engagement of surprisingly diverse projection sources and inform an integrated model of striatal function relevant to reward behavior and therapeutic neurostimulation approaches. Our work thus establishes a strategy for mechanistic analysis of multiregional neural systems in the mammalian brain.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41593-022-01014-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleFunctional dissection of neural circuitry using a genetic reporter for fMRIen_US
dc.typeArticleen_US
dc.identifier.citationGhosh, Souparno, Li, Nan, Schwalm, Miriam, Bartelle, Benjamin B, Xie, Tianshu et al. 2022. "Functional dissection of neural circuitry using a genetic reporter for fMRI." Nature Neuroscience, 25 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.relation.journalNature Neuroscienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-02-02T13:58:27Z
dspace.orderedauthorsGhosh, S; Li, N; Schwalm, M; Bartelle, BB; Xie, T; Daher, JI; Singh, UD; Xie, K; DiNapoli, N; Evans, NB; Chung, K; Jasanoff, Aen_US
dspace.date.submission2023-02-02T13:58:30Z
mit.journal.volume25en_US
mit.journal.issue3en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record