Show simple item record

dc.contributor.authorSuarez-Lopez, Lucia
dc.contributor.authorShui, Bing
dc.contributor.authorBrubaker, Douglas K
dc.contributor.authorHill, Marza
dc.contributor.authorBergendorf, Alexander
dc.contributor.authorChangelian, Paul S
dc.contributor.authorLaguna, Aisha
dc.contributor.authorStarchenko, Alina
dc.contributor.authorLauffenburger, Douglas A
dc.contributor.authorHaigis, Kevin M
dc.date.accessioned2023-02-03T17:47:21Z
dc.date.available2023-02-03T17:47:21Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/147863
dc.description.abstractInflammatory bowel diseases (IBDs) are genetically complex and exhibit significant inter-patient heterogeneity in disease presentation and therapeutic response. Here, we show that mouse models of IBD exhibit variable responses to inhibition of MK2, a pro-inflammatory serine/threonine kinase, and that MK2 inhibition suppresses inflammation by targeting inflammatory monocytes and neutrophils in murine models. Using a computational approach (TransComp-R) that allows for cross-species comparison of transcriptomic features, we identified an IBD patient subgroup that is predicted to respond to MK2 inhibition, and an independent preclinical model of chronic intestinal inflammation predicted to be non-responsive, which we validated experimentally. Thus, cross-species mouse-human translation approaches can help to identify patient subpopulations in which to deploy new therapies.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.ISCI.2021.103406en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceiScienceen_US
dc.titleCross-species transcriptomic signatures predict response to MK2 inhibition in mouse models of chronic inflammationen_US
dc.typeArticleen_US
dc.identifier.citationSuarez-Lopez, Lucia, Shui, Bing, Brubaker, Douglas K, Hill, Marza, Bergendorf, Alexander et al. 2021. "Cross-species transcriptomic signatures predict response to MK2 inhibition in mouse models of chronic inflammation." iScience, 24 (12).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.relation.journaliScienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-02-03T17:44:27Z
dspace.orderedauthorsSuarez-Lopez, L; Shui, B; Brubaker, DK; Hill, M; Bergendorf, A; Changelian, PS; Laguna, A; Starchenko, A; Lauffenburger, DA; Haigis, KMen_US
dspace.date.submission2023-02-03T17:44:32Z
mit.journal.volume24en_US
mit.journal.issue12en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record