MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Translatable pathways classification (TransPath-C) for inferring processes germane to human biology from animal studies data: example application in neurobiology

Author(s)
Carroll, Molly J; Garcia-Reyero, Natàlia; Perkins, Edward J; Lauffenburger, Douglas A
Thumbnail
DownloadPublished version (1.025Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 4.0 https://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>How to translate insights gained from studies in one organismal species for what is most likely to be germane in another species, such as from mice to humans, is a ubiquitous challenge in basic biology as well as biomedicine. This is an especially difficult problem when there are few molecular features that are obviously important in both species for a given phenotype of interest. Neuropathologies are a prominent realm of this complication. Schizophrenia is complex psychiatric disorder that affects 1% of the population. Many genetic factors have been proposed to drive the development of schizophrenia, and the 22q11 microdeletion (MD) syndrome has been shown to dramatically increase this risk. Due to heterogeneity of presentation of symptoms, diagnosis and formulation of treatment options for patients can often be delayed, and there is an urgent need for novel therapeutics directed toward the treatment of schizophrenia. Here, we present a novel computational approach, Translational Pathways Classification (TransPath-C), that can be used to identify shared pathway dysregulation between mouse models and human schizophrenia cohorts. This method uses variation of pathway activation in the mouse model to predict both mouse and human disease phenotype. Analysis of shared dysregulated pathways called out by both the mouse and human classifiers of TransPath-C can identify pathways that can be targeted in both preclinical and human cohorts of schizophrenia. In application to the 22q11 MD mouse model, our findings suggest that PAR1 pathway activation found upregulated in this mouse phenotype is germane for the corresponding human schizophrenia cohort such that inhibition of PAR1 may offer a novel therapeutic target.</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/147870
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Integrative Biology
Publisher
Oxford University Press (OUP)
Citation
Carroll, Molly J, Garcia-Reyero, Natàlia, Perkins, Edward J and Lauffenburger, Douglas A. 2021. "Translatable pathways classification (TransPath-C) for inferring processes germane to human biology from animal studies data: example application in neurobiology." Integrative Biology, 13 (10).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.