MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy

Author(s)
Niles, Jacquin
Thumbnail
DownloadAccepted version (1.755Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:p> Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) are attractive drug targets, and we present class I and II aaRSs as previously unrecognized targets for adenosine 5′-monophosphate–mimicking nucleoside sulfamates. The target enzyme catalyzes the formation of an inhibitory amino acid–sulfamate conjugate through a reaction-hijacking mechanism. We identified adenosine 5′-sulfamate as a broad-specificity compound that hijacks a range of aaRSs and ML901 as a specific reagent a specific reagent that hijacks a single aaRS in the malaria parasite <jats:italic>Plasmodium falciparum</jats:italic> , namely tyrosine RS ( <jats:italic>Pf</jats:italic> YRS). ML901 exerts whole-life-cycle–killing activity with low nanomolar potency and single-dose efficacy in a mouse model of malaria. X-ray crystallographic studies of plasmodium and human YRSs reveal differential flexibility of a loop over the catalytic site that underpins differential susceptibility to reaction hijacking by ML901. </jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/147892
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Science
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Niles, Jacquin. 2022. "Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy." Science, 376 (6597).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.