Show simple item record

dc.contributor.authorRizik, Luna
dc.contributor.authorDanial, Loai
dc.contributor.authorHabib, Mouna
dc.contributor.authorWeiss, Ron
dc.contributor.authorDaniel, Ramez
dc.date.accessioned2023-02-07T18:16:34Z
dc.date.available2023-02-07T18:16:34Z
dc.date.issued2022-09-24
dc.identifier.urihttps://hdl.handle.net/1721.1/147938
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Computational properties of neuronal networks have been applied to computing systems using simplified models comprising repeated connected nodes, e.g., perceptrons, with decision-making capabilities and flexible weighted links. Analogously to their revolutionary impact on computing, neuro-inspired models can transform synthetic gene circuit design in a manner that is reliable, efficient in resource utilization, and readily reconfigurable for different tasks. To this end, we introduce the perceptgene, a perceptron that computes in the logarithmic domain, which enables efficient implementation of artificial neural networks in <jats:italic>Escherichia coli</jats:italic> cells. We successfully modify perceptgene parameters to create devices that encode a minimum, maximum, and average of analog inputs. With these devices, we create multi-layer perceptgene circuits that compute a soft majority function, perform an analog-to-digital conversion, and implement a ternary switch. We also create a programmable perceptgene circuit whose computation can be modified from OR to AND logic using small molecule induction. Finally, we show that our approach enables circuit optimization via artificial intelligence algorithms.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-022-33288-8en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleSynthetic neuromorphic computing in living cellsen_US
dc.typeArticleen_US
dc.identifier.citationRizik, Luna, Danial, Loai, Habib, Mouna, Weiss, Ron and Daniel, Ramez. 2022. "Synthetic neuromorphic computing in living cells." Nature Communications, 13 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-02-07T18:09:52Z
dspace.orderedauthorsRizik, L; Danial, L; Habib, M; Weiss, R; Daniel, Ren_US
dspace.date.submission2023-02-07T18:09:57Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record