Show simple item record

dc.contributor.authorAydin, Onur
dc.contributor.authorPassaro, Austin P
dc.contributor.authorRaman, Ritu
dc.contributor.authorSpellicy, Samantha E
dc.contributor.authorWeinberg, Robert P
dc.contributor.authorKamm, Roger D
dc.contributor.authorSample, Matthew
dc.contributor.authorTruskey, George A
dc.contributor.authorZartman, Jeremiah
dc.contributor.authorDar, Roy D
dc.contributor.authorPalacios, Sebastian
dc.contributor.authorWang, Jason
dc.contributor.authorTordoff, Jesse
dc.contributor.authorMontserrat, Nuria
dc.contributor.authorBashir, Rashid
dc.contributor.authorSaif, M Taher A
dc.contributor.authorWeiss, Ron
dc.date.accessioned2023-02-07T18:48:32Z
dc.date.available2023-02-07T18:48:32Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/147943
dc.description.abstract<jats:p> Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell–cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the “black box” of living cells. </jats:p>en_US
dc.language.isoen
dc.publisherAIP Publishingen_US
dc.relation.isversionof10.1063/5.0076635en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAmerican Institute of Physics (AIP)en_US
dc.titlePrinciples for the design of multicellular engineered living systemsen_US
dc.typeArticleen_US
dc.identifier.citationAydin, Onur, Passaro, Austin P, Raman, Ritu, Spellicy, Samantha E, Weinberg, Robert P et al. 2022. "Principles for the design of multicellular engineered living systems." APL Bioengineering, 6 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.relation.journalAPL Bioengineeringen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-02-07T18:33:59Z
dspace.orderedauthorsAydin, O; Passaro, AP; Raman, R; Spellicy, SE; Weinberg, RP; Kamm, RD; Sample, M; Truskey, GA; Zartman, J; Dar, RD; Palacios, S; Wang, J; Tordoff, J; Montserrat, N; Bashir, R; Saif, MTA; Weiss, Ren_US
dspace.date.submission2023-02-07T18:34:12Z
mit.journal.volume6en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record