Show simple item record

dc.contributor.authorSung, Po-Yu
dc.contributor.authorLu, Mi
dc.contributor.authorHsieh, Chien-Te
dc.contributor.authorAshraf Gandomi, Yasser
dc.contributor.authorGu, Siyong
dc.contributor.authorLiu, Wei-Ren
dc.date.accessioned2023-02-10T16:15:28Z
dc.date.available2023-02-10T16:15:28Z
dc.date.issued2023-02-06
dc.identifier.urihttps://hdl.handle.net/1721.1/148017
dc.description.abstractComposite solid electrolytes (CSEs), composed of sodium superionic conductor (NASICON)-type Li<sub>1+x</sub>Al<sub>x</sub>Ti<sub>2&#8210;x</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP), poly (vinylidene fluoride-hexafluoro propylene) (PVDF-HFP), and lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) salt, are designed and fabricated for lithium-metal batteries. The effects of the key design parameters (i.e., LiTFSI/LATP ratio, CSE thickness, and carbon content) on the specific capacity, coulombic efficiency, and cyclic stability were systematically investigated. The optimal CSE configuration, superior specific capacity (~160 mAh g<sup>&minus;1</sup>), low electrode polarization (~0.12 V), and remarkable cyclic stability (a capacity retention of 86.8%) were achieved during extended cycling (&gt;200 cycles). In addition, with the optimal CSE structure, a high ionic conductivity (~2.83 &times; 10<sup>&minus;4</sup> S cm<sup>&minus;1</sup>) was demonstrated at an ambient temperature. The CSE configuration demonstrated in this work can be employed for designing highly durable CSEs with enhanced ionic conductivity and significantly reduced interfacial electrolyte/electrode resistance.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/membranes13020201en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleSodium Super Ionic Conductor-Type Hybrid Electrolytes for High Performance Lithium Metal Batteriesen_US
dc.typeArticleen_US
dc.identifier.citationMembranes 13 (2): 201 (2023)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-02-10T14:28:40Z
dspace.date.submission2023-02-10T14:28:40Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record