Show simple item record

dc.contributor.authorSchwartz, Emily
dc.contributor.authorO’Nell, Kathryn
dc.contributor.authorSaxe, Rebecca
dc.contributor.authorAnzellotti, Stefano
dc.date.accessioned2023-02-10T16:17:15Z
dc.date.available2023-02-10T16:17:15Z
dc.date.issued2023-02-10
dc.identifier.urihttps://hdl.handle.net/1721.1/148018
dc.description.abstractRecent neuroimaging evidence challenges the classical view that face identity and facial expression are processed by segregated neural pathways, showing that information about identity and expression are encoded within common brain regions. This article tests the hypothesis that integrated representations of identity and expression arise spontaneously within deep neural networks. A subset of the CelebA dataset is used to train a deep convolutional neural network (DCNN) to label face identity (chance = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.06</mn><mo>%</mo></mrow></semantics></math></inline-formula>, accuracy = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>26.5</mn><mo>%</mo></mrow></semantics></math></inline-formula>), and the FER2013 dataset is used to train a DCNN to label facial expression (chance = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>14.2</mn><mo>%</mo></mrow></semantics></math></inline-formula>, accuracy = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>63.5</mn><mo>%</mo></mrow></semantics></math></inline-formula>). The identity-trained and expression-trained networks each successfully transfer to labeling both face identity and facial expression on the Karolinska Directed Emotional Faces dataset. This study demonstrates that DCNNs trained to recognize face identity and DCNNs trained to recognize facial expression spontaneously develop representations of facial expression and face identity, respectively. Furthermore, a congruence coefficient analysis reveals that features distinguishing between identities and features distinguishing between expressions become increasingly orthogonal from layer to layer, suggesting that deep neural networks disentangle representational subspaces corresponding to different sources.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/brainsci13020296en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleChallenging the Classical View: Recognition of Identity and Expression as Integrated Processesen_US
dc.typeArticleen_US
dc.identifier.citationBrain Sciences 13 (2): 296 (2023)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-02-10T14:28:43Z
dspace.date.submission2023-02-10T14:28:42Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record