MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Metagenomic, (bio)chemical, and microscopic analyses reveal the potential for the cycling of sulfated EPS in Shark Bay pustular mats

Author(s)
Skoog, Emilie J; Moore, Kelsey R; Gong, Jian; Ciccarese, Davide; Momper, Lily; Cutts, Elise M; Bosak, Tanja; ... Show more Show less
Thumbnail
DownloadPublished version (3.856Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Cyanobacteria and extracellular polymeric substances (EPS) in peritidal pustular microbial mats have a two-billion-year-old fossil record. To understand the composition, production, degradation, and potential role of EPS in modern analogous communities, we sampled pustular mats from Shark Bay, Australia and analyzed their EPS matrix. Biochemical and microscopic analyses identified sulfated organic compounds as major components of mat EPS. Sulfur was more abundant in the unmineralized regions with cyanobacteria and less prevalent in areas that contained fewer cyanobacteria and more carbonate precipitates. Sequencing and assembly of the pustular mat sample resulted in 83 high-quality metagenome-assembled genomes (MAGs). Metagenomic analyses confirmed cyanobacteria as the primary sources of these sulfated polysaccharides. Genes encoding for sulfatases, glycosyl hydrolases, and other enzymes with predicted roles in the degradation of sulfated polysaccharides were detected in the MAGs of numerous clades including Bacteroidetes, Chloroflexi, Hydrogenedentes, Myxococcota, Verrucomicrobia, and Planctomycetes. Measurable sulfatase activity in pustular mats and fresh cyanobacterial EPS confirmed the role of sulfatases in the degradation of sulfated EPS. These findings suggest that the synthesis, modification, and degradation of sulfated polysaccharides influence microbial interactions, carbon cycling, and biomineralization processes within peritidal pustular microbial mats.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/148025
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
ISME Communications
Publisher
Springer Science and Business Media LLC
Citation
Skoog, Emilie J, Moore, Kelsey R, Gong, Jian, Ciccarese, Davide, Momper, Lily et al. 2022. "Metagenomic, (bio)chemical, and microscopic analyses reveal the potential for the cycling of sulfated EPS in Shark Bay pustular mats." ISME Communications, 2 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.