Show simple item record

dc.contributor.authorSchneider, Tapio
dc.contributor.authorDunbar, Oliver RA
dc.contributor.authorWu, Jinlong
dc.contributor.authorBöttcher, Lucas
dc.contributor.authorBurov, Dmitry
dc.contributor.authorGarbuno-Inigo, Alfredo
dc.contributor.authorWagner, Gregory L
dc.contributor.authorPei, Sen
dc.contributor.authorDaraio, Chiara
dc.contributor.authorFerrari, Raffaele
dc.contributor.authorShaman, Jeffrey
dc.date.accessioned2023-02-15T14:25:26Z
dc.date.available2023-02-15T14:25:26Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/148069
dc.description.abstract<jats:p>Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption.</jats:p>en_US
dc.language.isoen
dc.publisherPublic Library of Science (PLoS)en_US
dc.relation.isversionof10.1371/JOURNAL.PCBI.1010171en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePLoSen_US
dc.titleEpidemic management and control through risk-dependent individual contact interventionsen_US
dc.typeArticleen_US
dc.identifier.citationSchneider, Tapio, Dunbar, Oliver RA, Wu, Jinlong, Böttcher, Lucas, Burov, Dmitry et al. 2022. "Epidemic management and control through risk-dependent individual contact interventions." PLoS Computational Biology, 18 (6).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.relation.journalPLoS Computational Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-02-15T14:06:07Z
dspace.orderedauthorsSchneider, T; Dunbar, ORA; Wu, J; Böttcher, L; Burov, D; Garbuno-Inigo, A; Wagner, GL; Pei, S; Daraio, C; Ferrari, R; Shaman, Jen_US
dspace.date.submission2023-02-15T14:06:11Z
mit.journal.volume18en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record