Show simple item record

dc.contributor.authorGallet, Basile
dc.contributor.authorMiquel, Benjamin
dc.contributor.authorHadjerci, Gabriel
dc.contributor.authorBurns, Keaton J
dc.contributor.authorFlierl, Glenn R
dc.contributor.authorFerrari, Raffaele
dc.date.accessioned2023-02-15T15:31:14Z
dc.date.available2023-02-15T15:31:14Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/148075
dc.description.abstract<jats:p>We numerically and theoretically investigate the Boussinesq Eady model, where a rapidly rotating density-stratified layer of fluid is subject to a meridional temperature gradient in thermal wind balance with a uniform vertically sheared zonal flow. Through a suite of numerical simulations, we show that the transport properties of the resulting turbulent flow are governed by quasigeostrophic (QG) dynamics in the rapidly rotating strongly stratified regime. The ‘vortex gas’ scaling predictions put forward in the context of the two-layer QG model carry over to this fully three-dimensional system: the functional dependence of the meridional flux on the control parameters is the same, the two adjustable parameters entering the theory taking slightly different values. In line with the QG prediction, the meridional heat flux is depth-independent. The vertical heat flux is such that turbulence transports buoyancy along isopycnals, except in narrow layers near the top and bottom boundaries, the thickness of which decreases as the diffusivities go to zero. The emergent (re)stratification is set by a simple balance between the vertical heat flux and diffusion along the vertical direction. Overall, this study demonstrates how the vortex-gas scaling theory can be adapted to quantitatively predict the magnitude and vertical structure of the meridional and vertical heat fluxes, and of the emergent stratification, without additional fitting parameters.</jats:p>en_US
dc.language.isoen
dc.publisherCambridge University Press (CUP)en_US
dc.relation.isversionof10.1017/JFM.2022.501en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleTransport and emergent stratification in the equilibrated Eady model: the vortex-gas scaling regimeen_US
dc.typeArticleen_US
dc.identifier.citationGallet, Basile, Miquel, Benjamin, Hadjerci, Gabriel, Burns, Keaton J, Flierl, Glenn R et al. 2022. "Transport and emergent stratification in the equilibrated Eady model: the vortex-gas scaling regime." Journal of Fluid Mechanics, 948.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.relation.journalJournal of Fluid Mechanicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-02-15T15:09:12Z
dspace.orderedauthorsGallet, B; Miquel, B; Hadjerci, G; Burns, KJ; Flierl, GR; Ferrari, Ren_US
dspace.date.submission2023-02-15T15:09:14Z
mit.journal.volume948en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record