MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Daily Satellite Observations of Nitrogen Dioxide Air Pollution Inequality in New York City, New York and Newark, New Jersey: Evaluation and Application

Author(s)
Dressel, Isabella M; Demetillo, Mary Angelique G; Judd, Laura M; Janz, Scott J; Fields, Kimberly P; Sun, Kang; Fiore, Arlene M; McDonald, Brian C; Pusede, Sally E; ... Show more Show less
Thumbnail
DownloadPublished version (5.488Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Urban air pollution disproportionately harms communities of color and low-income communities in the U.S. Intraurban nitrogen dioxide (NO2) inequalities can be observed from space using the TROPOspheric Monitoring Instrument (TROPOMI). Past research has relied on time-averaged measurements, limiting our understanding of how neighborhood-level NO2 inequalities co-vary with urban air quality and climate. Here, we use fine-scale (250 m × 250 m) airborne NO2 remote sensing to demonstrate that daily TROPOMI observations resolve a major portion of census tract-scale NO2 inequalities in the New York City-Newark urbanized area. Spatiotemporally coincident TROPOMI and airborne inequalities are well correlated (r = 0.82-0.97), with slopes of 0.82-1.05 for relative and 0.76-0.96 for absolute inequalities for different groups. We calculate daily TROPOMI NO2 inequalities over May 2018-September 2021, reporting disparities of 25-38% with race, ethnicity, and/or household income. Mean daily inequalities agree with results based on TROPOMI measurements oversampled to 0.01° × 0.01° to within associated uncertainties. Individual and mean daily TROPOMI NO2 inequalities are largely insensitive to pixel size, at least when pixels are smaller than ∼60 km2, but are sensitive to low observational coverage. We statistically analyze daily NO2 inequalities, presenting empirical evidence of the systematic overburdening of communities of color and low-income neighborhoods with polluting sources, regulatory ozone co-benefits, and worsened NO2 inequalities and cumulative NO2 and urban heat burdens with climate change.
Date issued
2022-11-15
URI
https://hdl.handle.net/1721.1/148076
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Environmental Science & Technology
Publisher
American Chemical Society (ACS)
Citation
Dressel, Isabella M, Demetillo, Mary Angelique G, Judd, Laura M, Janz, Scott J, Fields, Kimberly P et al. 2022. "Daily Satellite Observations of Nitrogen Dioxide Air Pollution Inequality in New York City, New York and Newark, New Jersey: Evaluation and Application." Environmental Science & Technology, 56 (22).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.