Show simple item record

dc.contributor.authorCasey, John R
dc.contributor.authorBoiteau, Rene M
dc.contributor.authorEngqvist, Martin KM
dc.contributor.authorFinkel, Zoe V
dc.contributor.authorLi, Gang
dc.contributor.authorLiefer, Justin
dc.contributor.authorMüller, Christian L
dc.contributor.authorMuñoz, Nathalie
dc.contributor.authorFollows, Michael J
dc.date.accessioned2023-02-15T19:50:05Z
dc.date.available2023-02-15T19:50:05Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/148084
dc.description.abstract<jats:p> Extensive microdiversity within <jats:italic>Prochlorococcus</jats:italic> , the most abundant marine cyanobacterium, occurs at scales from a single droplet of seawater to ocean basins. To interpret the structuring role of variations in genetic potential, as well as metabolic and physiological acclimation, we developed a mechanistic constraint-based modeling framework that incorporates the full suite of genes, proteins, metabolic reactions, pigments, and biochemical compositions of 69 sequenced isolates spanning the <jats:italic>Prochlorococcus</jats:italic> pangenome. Optimizing each strain to the local, observed physical and chemical environment along an Atlantic Ocean transect, we predicted variations in strain-specific patterns of growth rate, metabolic configuration, and physiological state, defining subtle niche subspaces directly attributable to differences in their encoded metabolic potential. Predicted growth rates covaried with observed ecotype abundances, affirming their significance as a measure of fitness and inferring a nonlinear density dependence of mortality. Our study demonstrates the potential to interpret global-scale ecosystem organization in terms of cellular-scale processes. </jats:p>en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionof10.1126/SCIADV.ABL4930en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceScience Advancesen_US
dc.titleBasin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiologyen_US
dc.typeArticleen_US
dc.identifier.citationCasey, John R, Boiteau, Rene M, Engqvist, Martin KM, Finkel, Zoe V, Li, Gang et al. 2022. "Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology." Science Advances, 8 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-02-15T19:40:46Z
dspace.orderedauthorsCasey, JR; Boiteau, RM; Engqvist, MKM; Finkel, ZV; Li, G; Liefer, J; Müller, CL; Muñoz, N; Follows, MJen_US
dspace.date.submission2023-02-15T19:40:49Z
mit.journal.volume8en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record