MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Early nitrogenase ancestors encompassed novel active site diversity

Author(s)
Schwartz, Sarah L; Garcia, Amanda K; Kaçar, Betül; Fournier, Gregory P
Thumbnail
DownloadPublished version (480.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>Ancestral sequence reconstruction (ASR) infers predicted ancestral states for sites within sequences and can constrain the functions and properties of ancestors of extant protein families. Here, we compare the likely sequences of inferred nitrogenase ancestors to extant nitrogenase sequence diversity. We show that the most-likely combinations of ancestral states for key substrate channel residues are not represented in extant sequence space, and rarely found within a more broadly defined physiochemical space—supporting that the earliest ancestors of extant nitrogenases likely had alternative substrate channel composition. These differences may indicate differing environmental selection pressures acting on nitrogenase substrate specificity in ancient environments. These results highlight ASR's potential as an in silico tool for developing hypotheses about ancestral enzyme functions, as well as improving hypothesis testing through more targeted in vitro and in vivo experiments.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/148096
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Molecular Biology and Evolution
Publisher
Oxford University Press (OUP)
Citation
Schwartz, Sarah L, Garcia, Amanda K, Kaçar, Betül and Fournier, Gregory P. 2022. "Early nitrogenase ancestors encompassed novel active site diversity." Molecular Biology and Evolution, 39 (11).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.