MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Iterative Linear Method with Variable Shear Stress Magnitudes for Estimating the Stress Tensor from Earthquake Focal Mechanism Data: Method and Examples

Author(s)
Beaucé, Eric; van der Hilst, Robert D; Campillo, Michel
Thumbnail
DownloadAccepted version (2.629Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:title>ABSTRACT</jats:title> <jats:p>Earthquake focal mechanism data provide information about the stress state at the origin of earthquakes. The inversion methods that are commonly used to infer the stress tensor from focal mechanisms have varying complexity but always rely on a number of assumptions. We present an iterative method built upon a classic linear stress tensor inversion that allows for relaxing the assumption on shear stress magnitudes while preserving the computational simplicity of the linear problem. Every iteration of our method computes the least-squares solution of the problem, which makes the method fast enough to estimate the inverted parameter errors with nonparametric resampling methods such as bootstrapping. Following previous studies, this method removes the fault plane ambiguity in focal mechanism data by selecting the nodal plane that best satisfies the Mohr–Coulomb failure criterion. We first test the performance and robustness to noise of the proposed method on synthetic data sets and then apply it to data from the Southern California and Geysers geothermal field data sets. We focus the study on investigating the consequences of relaxing the assumption of constant shear stress magnitudes. Our variable shear method successfully generalizes its constant shear counterpart: it is able to perform similarly when the constant shear assumption is a good approximation and provides more accurate results when it is not. We provide the Python package iterative linear stress inversion to implement the proposed method.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/148206
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Bulletin of the Seismological Society of America
Publisher
Seismological Society of America (SSA)
Citation
Beaucé, Eric, van der Hilst, Robert D and Campillo, Michel. 2022. "An Iterative Linear Method with Variable Shear Stress Magnitudes for Estimating the Stress Tensor from Earthquake Focal Mechanism Data: Method and Examples." Bulletin of the Seismological Society of America, 112 (3).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.