MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Contribution of Small Impact Craters to Lunar Polar Wander

Author(s)
Smith, David E; Viswanathan, Vishnu; Mazarico, Erwan; Goossens, Sander; Head, James W; Neumann, Gregory A; Zuber, Maria T; ... Show more Show less
Thumbnail
DownloadPublished version (5.996Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>Changes in mass distribution affect the gravitational figure and reorient a planetary body’s surface with respect to its rotational axis. The mass anomalies in the present-day lunar gravity field can reveal how the figure and pole position have evolved over the Moon’s history. By examining sequentially each individual crater and basin, working backward in time order through the catalog of nearly 5200 craters and basins between 1200 and 20 km in diameter, we investigate their contribution to the lunar gravitational figure and reconstruct the evolution of the pole position by extracting their gravitational signatures from the present-day Moon. We find that craters and basins in this diameter range, which excludes South Pole–Aitken, have contributed to nearly 25% of the present-day power from the Moon’s degree-2 gravitational figure and resulted in a total displacement of the Moon’s pole by ∼10° along the Earth–Moon tidal axis over the past ∼4.25 billion years. This also implies that the geographical location of the Moon’s rotational pole has not moved since ∼3.8 Ga by more than ∼2° in latitude owing to impacts, and this has implications for the long-term stability of volatiles in the polar regions.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/148217
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
The Planetary Science Journal
Publisher
American Astronomical Society
Citation
Smith, David E, Viswanathan, Vishnu, Mazarico, Erwan, Goossens, Sander, Head, James W et al. 2022. "The Contribution of Small Impact Craters to Lunar Polar Wander." The Planetary Science Journal, 3 (9).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.