Show simple item record

dc.contributor.authorSeager, Sara
dc.date.accessioned2023-03-02T19:20:16Z
dc.date.available2023-03-02T19:20:16Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/148283
dc.description.abstractIt is commonly accepted that exoplanets with orbital periods shorter than 1 day, also known as ultra-short period (USP) planets, formed further out within their natal protoplanetary disk, before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here, we present the discovery of a four planet system orbiting the bright (V=10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of $\sim$ 13 hours, a mass of 1.42 $\pm$ 0.18 M$_{\oplus}$, a radius of $1.166^{0.061}_{-0.058}$ R$_{\oplus}$, and a mean density of 4.89$^{+1.03}_{-0.88}$ gcm$^{-3}$. Via Doppler spectroscopy, we discovered that the system hosts three outer planets on nearly circular orbits with periods of 6.6, 26.2, and 61.3d and minimum masses of 5.03 $\pm$ 0.41 M$_{\oplus}$, 33.12 $\pm$ 0.88 M$_{\oplus}$ and 15.05$^{+1.12}_{-1.11}$ M$_{\oplus}$, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits, then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyrs, starting from an initial orbit of 0.02au. TOI-500 is the first four planet system known to host a USP Earth analog whose current architecture can be explained via a non-violent migration scenario.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41550-022-01641-Yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet systemen_US
dc.typeArticleen_US
dc.identifier.citationSeager, Sara. 2022. "A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system." Nature Astronomy, 6 (6).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.relation.journalNature Astronomyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-03-02T18:21:44Z
dspace.orderedauthorsSerrano, LM; Gandolfi, D; Mustill, AJ; Barragán, O; Korth, J; Dai, F; Redfield, S; Fridlund, M; Lam, KWF; Díaz, MR; Grziwa, S; Collins, KA; Livingston, JH; Cochran, WD; Hellier, C; Bellomo, SE; Trifonov, T; Rodler, F; Alarcon, J; Jenkins, JM; Latham, DW; Ricker, G; Seager, S; Vanderspeck, R; Winn, JN; Albrecht, S; Collins, KI; Csizmadia, S; Daylan, T; Deeg, HJ; Esposito, M; Fausnaugh, M; Georgieva, I; Goffo, E; Guenther, E; Hatzes, AP; Howell, SB; Jensen, ELN; Luque, R; Mann, AW; Murgas, F; Osborne, HLM; Palle, E; Persson, CM; Rowden, P; Rudat, A; Smith, AMS; Twicken, JD; Van Eylen, V; Ziegler, Cen_US
dspace.date.submission2023-03-02T18:21:48Z
mit.journal.volume6en_US
mit.journal.issue6en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record